
Abstract. Superdelocalizability, Sr, de®ned by Fukui
et al. as a variant of reactivity indices in the HuÈ ckel
molecular orbital scheme for conjugated hydrocarbon
molecules is reinvestigated with particular emphasis on
its behavior for in®nitely large p-electronic systems.
Surprisingly, almost all the Sr values of polyacetylene are
found to diverge with the size of molecule, while all the
Sr values of comb polyene converge to certain values.
Similarly, the Sr values of linear polyacene diverge, while
those of zigzag polyacene converge. Whether the super-
delocalizability for a series of periodic polymers con-
verges or diverges can be predicted, respectively, if the
density of states of the in®nitely large p-electron network
is shown to have non-zero or zero gap at the Fermi level.
The behavior of atom-atom polarizability de®ned by
Coulson et al. is also checked and discussed.
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1 Introduction

Owing to the rapid and substantial progress in both
hardware and software capabilities, it has become
possible to trace the detailed paths of elementary
reactions by calculating the global and subtle changes
of electronic states around the valleys and ridges on a
potential surface along some reaction coordinates.
Notwithstanding this high-tech development the role of
the simple reactivity indices, derived from HuÈ ckel
molecular orbitals (HMO), has not been totally wiped
out from the world of chemical thinking [1, 2]. For
example, without the naõÈ ve concept of bond order and
charge density one cannot interpret or anticipate the
stability of molecules and reaction mechanisms in any

branch of chemistry. This information can easily be
estimated from the family of polarizabilities de®ned by
Coulson and Longuet-Higgins [3], who have established
the mathematical backbone of the HMO method. Fukui
and his group pointed out the importance of the HOMO
and LUMO under the name of ``frontier orbitals'' [4]
and then proposed a new reactivity index, the super-
delocalizability, Sr [5]. Later their theory grew into the
theory of HOMO-LUMO interaction [6].

It must be emphasized here that these HuÈ ckel-based
theories have been applied only to small polycyclic ar-
omatic hydrocarbon molecules no larger than coronene
[7]. After extensive studies of these molecules Fukui et al.
claimed that the relative magnitudes of the various re-
activity indices, prr (atom-atom polarizability), Fr (free
valency), Lr (localization energy), fr (frontier electron
density), and Sr, within a molecule are in parallel with
each other [7]. Among these quantities Fr; Lr and fr have
no chance to diverge with an increase in the size of
molecules. However, as far as we know, this kind of
e�ect has never been discussed for prr and Sr.

Recently the usefulness of the HuÈ ckel molecular or-
bital method for calculating and estimating the proper-
ties of in®nitely large networks such as polyacetylene
and graphite was rediscovered [8±10]. In some cases we
can manipulate the analytical exposition to allow a
plainer discussion. This is a great advantage of the HMO
method. Furthermore, by combining a perturbation ex-
pansion, a contour integral in the complex plane, and
graph theoretical manipulation, Hosoya could derive a
mathematical proof of the correctness of the diagram-
matic recipe for ``organic electron theory'' for predicting
the direction and extent of p-electron ¯ow in conjugated
hydrocarbon networks [11]. In this case the HMO
method is used as a proof technique for judging the
validity of various hypotheses. In this way we have also
been checking the mathematical resilience and range of
reliability of the HMO method.

During that study it happened to be found that the
superdelocalizability and the atom-atom polarizability
for some series of molecules diverge with the size of
molecules. Although analysis has not yet been com-
pleted, preliminary accounts of the instability of reac-
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tivity indices are reported in this paper. In order to es-
tablish the reliability of the conventional HMO method
and to re®ne its mathematical structure, and also to
explore the limit of its applicability we have to evaluate
this instability problem seriously.

2 Superdelocalizability and polarizability

In the HMO scheme the superdelocalizability, Sr, at
atom r in a conjugated molecule for an electrophilic
reaction is de®ned by Fukui et al. [5] as

Sr � 2
Xocc
n�1

C2
nr

xn
: �1�

They also de®ned other types of superdelocalizabilities
for nucleophilic and radical reactions by taking di�erent
ranges of summation. Among them only the super-
delocalizability for electrophilic reactions, Eq. (1), will
be considered here, because it can be directly compared
with other conventional reactivity indices. Namely, the
de®nition of Eq. (1) is closely related to the bond order,
pHR
rs , proposed by Ruedenberg and Ham [12] as in the
following equation,

pHR
rs � 2

Xocc
n�1

CnrCns

xn
; �2�

which, however, has been found to be identical with the
Pauling's bond order, pPrs, for alternant hydrocarbons

without 4n-membered rings [12±14]. It is obvious that pPrs
cannot take a value larger than unity, and so does pHR

rs .
In order to calculate the quantities in Eqs. (1) and (2)

for an in®nitely large network the following expressions
are useful for performing contour integration in the
complex plane [3, 7, 14],

Sr � ÿ2
Xocc
n�1

Drr�xn�
xnD

0�xn� � ÿ
1

pi

I
c

Drr�z�
zD�z� dz �3�

and

pHR
rs � ÿ2

Xocc
n�1

Drs�xn�
xnD

0�xn� � ÿ
1

pi

I
c

Drs�z�
zD�z� dz ; �4�

without recourse to the LCAO MO wavefunctions. Here
D�x� is the secular determinant, or its characteristic
polynomial, PG�x�,

D�x� � PG�x� � �ÿ1�N det(Aÿ xE) ; �5�
which is well re¯ected from the topological structure of
G, a graph corresponding to the carbon atom skeleton
of a conjugated hydrocarbon molecule with N carbon
atoms [15±18]. Here A is the adjacency matrix of G, and
E is the unit matrix of order N :D0 is the ®rst derivative of
D with respect to x and Drs is the adjunct, or cofactor, of
D obtained by deleting the elements in r-th row and s-th
column and multiplied by �ÿ1�r�s.

In this paper, for mathematical simplicity, we will be
concerned with only such even bipartite graphs, i.e.,

graphs corresponding to even alternant hydrocarbon
molecules that have no 4n-membered ring. Then the
characteristic polynomial of a bipartite graph G can be
expressed as

PG�x� �
Xm

k�0
�ÿ1�k ak xNÿ2k ; �6�

with m � �N=2�. Note that for almost all practical cases
m � N=2 and the conjugated hydrocarbon molecule has
at least one KekuleÂ structure. In other words we have
am 6� 0, and thus PG�0� 6� 0.

As the poles of the integrand in Eqs. (3) and (4) are
situated along the real axis and also at the origin, the
contour c in the complex plane is chosen as in Fig. 1,
where the radii of the inner and outer semicircles are
in®nitesimally small and in®nitely large, respectively,
Namely, the contour integration along c is explicitly
expressed asI
c

dz � lim
R!0

( Zr�R

r�1
h�p=2

dz�
Zh�ÿp=2

h�p=2
r�R

dz�
Zr�1

r�R
h�ÿp=2

dz�
Zh�p=2

h�ÿp=2
r�1

dz

)
:

�7�
Before explaining the execution of the integration for
speci®c cases let us de®ne the polynomial qG�x� for
graph G associated with its characteristic polynomial as

qG�x� �
Xm

k�0
akxNÿ2k : �8�

From Eqs. (6) and (8) we have

PG�iy� � iN qG�y� �9�
for a bipartite graph.

The subgraph obtained from G by deleting vertex
atom r together with all the edges incident to r has been
denoted as Gÿr [14]. Let us also de®ne another sub-
graph Gÿrs by deleting the path from r to s together
with all the edges incident to r and s [14]. The following
relation can easily be veri®ed:

Fig. 1. The contour c to be integrated in the complex plane for
calculating the superdelocalizability
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Sr � 2

p

Z1
0

qGÿ r�y�
yqG�y� dy : �10�

Let us de®ne the integrand of Eq. (10) as FG;r�y�.

FG;r�y� � qGÿ r�y�
yqG�y� � ÿ

PGÿ r�iy�
iyPG�iy� : �11�

Since Gÿr is associated with a radical, qGÿ r�y� is a
polynomial of odd order and its last term is amy (am is
not necessarily non-zero). Then it seems that neither the
integrand FG;r�y� nor the integral Sr diverges at least for
a graph of ®nite size.

For later discussion the de®nition of the atom-atom
polarizability and its integral expression are given here
[3],

prs � 4
Xocc

n

Xvac
m

CnrCmrCnsCms

xn ÿ xm
�12�

� ÿ 1

pi

I
c

Drs�z�
D�z�

� �2

dz

� �ÿ1�r�s 2
p

Z1
0

qGÿ rs�y�
qG�y�

� �2

dy ; �13�

where all the quantities are as in Eqs. (1)±(4) and (10). In
this case the contour c is not necessarily a detour around
the origin (Eq. (7)) but is simply chosen as

I
c

dz �
Zr�ÿ1

r�1
h�p=2

dz�
Zh�p=2

h�ÿp=2
r�1

dz : �14�

3 Results

3.1 Linear polyene

Consider a path graph, SN , or a linear polyene with
N carbon atoms. By letting G � N its characteristic
polynomial, PN �x�, is expressed as [19]

PN �x� �
Xm

k�0
�ÿ1�k N ÿ k

k

� �
xNÿ2k ; �15�

with the recursion relation,

PN �x� � xPNÿ1�x� ÿ PNÿ2�x� : �16�
Then we have

qN �x� �
Xm

k�0

N ÿ k
k

� �
xNÿ2k �17�

and

qN �x� � xqNÿ1�x� � qNÿ2�x� : �18�
Let us calculate the superdelocalizabilities, Sr, of a linear
polyene 1 at various carbon atoms, where the index r

runs from the terminal atom to the center of the linear
chain. The calculated values of S1 to S4 and Sc for the
smaller linear polyenes are plotted in Fig. 2, where the
S2l�1 and Sc values increase almost linearly to log N ,
while S2l values rapidly converge to certain limits. For
a given N the magnitude of Sr are ordered as follows:

S1 > S3 > S5 > � � � > S6 > S4 > S2 :

This oscillating behavior of Sr is gradually damping
toward the center of the molecule, but in the central
region all the values of Sr seem to gather around Sc.

We can show this divergent character of the S2l�1 of
linear polyenes in another way. By noticing that N � 2m
and using Eq. (17) the value of FN ;1 at y � 0 can be
expanded as

FN ;1�0� � qNÿ1�y�
yqN �y�

���
y�0

� N ÿ 1ÿ �mÿ 1�
mÿ 1

� �,
N ÿ m

m

� �
�19�

� m
N ÿ 2m� 1

� N
2

:

Together with the fact that the ®rst derivative of this F
function at y � 0 is zero, one can conclude that the S1

value of polyacetylene diverges. A similar analysis yields
that FN ;2l�1�0� � N=2ÿ l and FN ;c�0� � N=4.

The divergent behavior of the S1 value of polyacety-
lene can also be veri®ed by the integration of the cor-
responding F function. Assume that the ratio of the
successive q functions converges to a�x� as
qN �x�=qNÿ1�x� ! a�x� �20�
Then by applying this relation to Eq. (18) we get the
following relation for large N ,

a�x� � x� 1=a�x� ; �21�

Fig. 2. The Sr values of linear polyacenes
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yielding

a�x� � x� �������������
x2 � 4
p

2
: �22�

By using this, the integral in Eq. (10) for S1 of
polyacetylene can be calculated by

S1 � 2

p

Z1
0

dy
ya�y� : �23�

Numerical integration shows that this is divergent, as
is Sc.

On the other hand, the S2 value of polyacetylene can
be calculated as

S2 � 2

p

Z1
0

dy

fa�y�g2 �
8

3p
� 0:8488 : �24�

A similar analysis can be performed for prr of polyacet-
ylene. It is interesting to observe that, when we use Eq.
(13), the convergent value of p11 of polyacetylene is
identical with S2 of polyacetylene. In our later discussion
we will show that the behaviors of these two indices for
in®nitely large systems vary for certain series of graphs.

3.2 Comb polyene

Experimentally it is rather di�cult to isolate and
measure the physico-chemical and thermodynamic prop-
erties of comb polyenes 2 (Table 1). However, from
theoretical studies they are known to be the least stable

isomers among the branched polyenes, and thus have
been extensively studied as the counterparts of the most
stable linear polyenes [9, 20].

In order to obtain the recursion relation of the
characteristic polynomial of the series of comb graphs,
Cn, another series of graphs, Dn, as shown in Fig. 3,
must be considered. A pair of useful recursion relations
connecting these two graphs are given in Fig. 3.

According to the recipe proposed by Hosoya [21] the
recursion relation common to Cn and Dn graphs can be
straightforwardly obtained as

Fn � �x2 ÿ 1�Fnÿ1 ÿ x2Fnÿ2 �F � C, D� �25�
We will show that all the superdelocalizabilities of these
series of graphs rapidly converge to certain values for
in®nitely large networks. In Table 1 partial results of Sr
values for various atomic positions are given together
with the limiting values obtained by the following
analysis.

Let us assume that the rational function comprised of
the characteristic polynomials of the two successive Cn
functions converges to b�x� as
Cn�1=Cn ! b�x� : �26�
Then according to Eq. (25), b�x� is expected to obey

fb�x�g2 ÿ �x2 ÿ 1�b�x� � x2 � 0 ; �27�
yielding

b�x� � �x
2 ÿ 1� � �������������������������

x4 ÿ 6x2 � 1
p

2
�28�

which is transformed into

b�y� � �y
2 � 1� �

�������������������������
y4 � 6y2 � 1

p
2

; �29�
for calculating the integral in Eq. (10).

The form of the analytical formula of the integrand in
Eq. (10) depends on the position of the selected carbon
atom r. However, by the aid of the above recursion re-
lations between C and D and b�y� those integrands can
be reduced to the simpler forms given in Table 1. The
limiting values were obtained by numerical integration
of these integrands. It should be noted that the rate of
convergence of the Sr values for comb polyenes is so

Table 1. Convergence of the superdelocalizability (Sr) of comb
polyenes, C2n+1

2n+1a r

1b 1¢c n+1b n+1¢c

3 0.9082 1.3165 0.8165 1.6330
5 0.9065 1.3191 0.8373 1.5932
7 0.9065 1.3192 0.8342 1.5980
11 0.9065 1.3192 0.8346 1.5974

FG,r (y)
d 1

b
b�1
b2

b
b2�y2

b�2
b2�y2

2
p

R1
0 FG;r�y� dy 0.9065 1.3192 0.8346 1.5974

a The number of teeth. Total number of carbon atoms is 4n + 2
bPosition of the root of a tooth
c Position of the tip of a tooth
d See Eq. (11). For b see Eq. (29)

Fig. 3. Comb graph Cn and graph Dn related through recursion
relations
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rapid that with only ten carbon atoms the limiting values
can be obtained to three signi®cant digits, in marked
contrast with the log N divergence of linear polyenes.

We can also show that the polarizabilities of comb
polyenes 2 do not converge as those of polyacetylene 1.
Now it becomes clear that both the Sr and prr of 2, the
comb polyene, do not diverge, while S2l�1 diverges and
prr converges in 1. Between these two isomeric polyenes
there are a vast variety of modes of branching in con-
jugated polyene networks. To clarify this problem, the Sr

values of structures 3 and 4 of acyclic polyenes were
calculated.

Although the numerical values are not given here,
most of the superdelocalizabilities of 3 were found to
diverge, while those of 4 converge. We note that the
density of states of 1 has no HOMO-LUMO band gap,
while a rather big band gap is found between the con-
duction and valence bands of 2. By the use of standard
techniques [22, 33] we can ®nd the same situation for 3
and 4. Namely, there is no HOMO-LUMO band gap in
the density of states of 3, while a big band gap is found
for 4.

Thus we can hypothesize that the Sr of a polyene
whose density of states has no band gap will diverge with
the size of the molecule, while those of a polyene with
non-zero band gap will converge to certain ®nite values.
We have already shown that whether a benzenoid
polymer has zero or non-zero band gap at the Fermi
level in an HMO is determined, respectively, by the ex-
istence or non-existence of an NBMO in the hypothetical
cyclic monomer or dimer [24]. However, in this case we

can predict the continuity around the Fermi level from
the existence of an NBMO in ``cyclic tetramer'' as il-
lustrated in Fig. 4. For polarizabilities no such simple
rule has ever been discovered.

It is interesting to notice the contrastive behaviors of
the Sr of 1 and 2 in parallel with the continuity-discon-
tinuity properties of the phase of the delocalized p-or-
bitals involved in the cyclic interaction for the electron
delocalization from bonds to bonds in 1 and 2 pointed
out by Inagaki et al. [25].

3.3 Polyacenes

For our last example we will look at the behavior of the
Sr of linear �In� and zigzag �Wn� polyacenes, where n
refers to the number of hexagonal rings (Fig. 5).

There are two di�erent types of carbon atoms in In:
those bound to two adjacent carbon atoms (external)
and those bound to three adjacent carbons (internal).
We can also say that In is composed of two connected
zigzag hydrocarbon radical chains with 2n� 1 carbon
atoms. It has been known that the value of Sr of a long
polyacene increases as one goes from the end of the
zigzag edge to the center [5]. Let us denote the
superdelocalizability at one of the external carbon
atoms in the m-th hexagonal rings as
S2m �m � 1; 2; . . . ; �n� 1�=2�. As shown in Fig. 6 the
value of S2m for a ®xed m slowly increases with n, the
length of the polyacene, and their envelope is found to
be a straight line, meaning that the superdelocalizability
of In diverges with the size of molecule. In Table 2 the
values of S2n�2 of I2n�1 polyacenes are given. The Sr

values of the external carbon atoms of a hypothetical
cyclic polyacene series, �I2n, were also calculated, and the
results are compared in Fig. 6 and Table 2 with those of
linear polyacenes. Both the Sr values are found to in-

Fig. 4. ``Cyclic tetramers'', 14±44, of polyenes, 1±4. Existence of
NBMO's in 14 and 34 predicts the zero band gap at the Fermi level
of the density of states of 1 and 3, while the in®nitely large 2 and 4
have non-zero band gap as 24 and 44 have no NBMO. This
di�erence is directly connected to the divergence and convergence
of their Sr values

Fig. 5. Linear I2n�1 and zigzag W2n�1 polyacene graphs, and the
numbering of external carbon atoms
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crease almost linearly with the number of hexagonal
rings.

We have also calculated the values of prr for In. The
prr value of the external carbon atom seems to converge
to a limiting value, while that of the internal carbon
atom seems to diverge with the size of the molecule.

It has been demonstrated previously that In and Wn
have markedly di�erent band gaps [22, 24]. In fact, In
has no band gap, while in Wn the band gap is large, even
though these two networks are composed of the same
butadiene units. Whether the density of states of a given
polymer has zero or non-zero band gap has already been
studied extensively and can be predicted from the elec-
tronic structure of hypothetical cyclic monomer or dimer
[23, 24].

The rate of convergence of Sr values in Wn polyacene
is so fast that the terminal structure W10 is already at the
convergent limits of Sr, and the external and internal
carbon atoms in the central part of Wn with n above 20
have ®xed Sr values as shown in Fig. 7.

Although the concept of the superdelocalizability for
a conjugated p-electron system was proposed by Fukui
et al., in analogy with the Ham-Ruedenberg variant of
the bond order, to be used as a reactivity index, its
mathematical behavior was found to be closely related
to the shape of the density of states near the Fermi level.
The Ham-Ruedenberg bond order was found to give
exactly the same numerical information as the Pauling
bond order derived solely from counting the number of
resonance structures [12, 13]. Thus the superdelocaliz-
ability should also have some link to the resonance
theory. We are currently pursuing this idea.

4 Conclusion

Although the ®nal analysis on the crucial factor of the
convergence of polarizabilities has not yet been ®nished,
we can safely conclude that the superdelocalizabilities of
in®nitely large polymers whose density of p-electron
states has no band gap diverges with the size of the
polymer. Thus, comparison of the values of super-
delocalizability for p-electron conjugated systems should
be performed within a molecule or within a group of
compounds belonging to the same type of molecules.
Hidden mathematical properties of Sr are worthy of
further analysis.
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Note added in proof
After submission of this manuscript the author was informed by

Prof. Isihara that he has pointed out the divergent property of the
superdelocalizability for linear polyene based on the discussion
quite di�erent from the present treatment. The author is greatly
indebted to him for this important information.
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